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ASYMMETRIC INDUCTION AT C(B) AND C(a) OF N-ENOYL SULTAMS 

BY 1,4-HYDRIDE ADDITION/ENOLATE TRAPPING1 

Wolfgang Oppolzer* and Giovanni Poli 

Departement de Chimie Organique, Universite de Geneve, CH-1211 Geneve 4, Switzerland 

Abstract: Conjugate addition of L-Selectride to a,B-enoyl sultams 1 and 2 followed by 
electrophilic trapping of the resulting enolates gave in one operation saturated imides with 
high /3- and/or a- stereodifferentiation. 

Recently excellent stereoface differentiation was observed on Pd-catalyzed hydrogenations 

of a,j3-olefinic imides 1 to provide, after saponification of products 2, B-substituted 

carboxylic acids in high enantiomeric purity2 (e.g. Scheme 1, entry a). 
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In continuation of this work we report here 1,4-hydride additions3 to the conjugated imides 

1 which proceed with efficient but strikingly ouuosite a-face discrimination.Thus, treatment 

of imides 1 with lithium tri-s-butylborohydride (L-SelectrideR) (1.2 eq) in toluene at -85" to 

-40" afforded 1,4-adducts 3 usually in 72 to 94% yield and in 90 to 94% diastereomeric excess 

(Scheme 1, entries b-e) 4. No 1,2 additions were observed except on reduction of the sterically 

more hindered acetal 1f4 which gave 3f4 in only 41% yield. 

We then adressed the issue of combining the nucleophilic p-addition with electrophilic 
5 trapping of the transient enolates . Scheme 2 depicts the results of studies which focus on 

the generation of an a-positioned stereocenter.Starting from the a-substituted acryloyl sultam 

h4 successive addition of L-Selectride and sat aq. NH4C1 provided the (R)-a-methyl imide &g4 

in 86% d.e. which was increased to 92% d.e. by crystallization. It thus appears that both, 

formation and protonation, of the enolate intermediate occur in a highly stereoselective 

manner. Accordingly,alternation of the enolate E/Z-ratio should entail opposite product 

topicities. 
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In agreement with this postulate ( vide infra) a4 (which is the (a-S)-epimer of Q) was 

obtained in 82% d.e. (raised to 96% d.e. by crystallization) on subjecting the a,p- 

disubstituted enoyl sultamA4 to the above hydride-addition/protonation tandem.Comparison of 

entries i and j exemplifies the option to direct the developing a-configuration by permutation 

of R3 and the electrophile. Thus starting from a4 a face-selective protonation of an a- 

methyl-substituted enolate gave the a-(S)product x4, whereas methylation(MeI/HMPA) of the o- 

unsubstituted enolate derived from g4 provided the a-(R)-epimer 3' in >98% d.e.. The higher 

level of stereodifferentiation observed on methylation compared to protonation parallels 

results obtained with racemic enolates 5 . 

Having achieved good p- (1 + 2. or 3) or a- (2 -+ 5 or 6) stereodifferentiation we then 

explored the possibility of inducing two asymmetric centers at C(B) and C(a) in one synthetic 

operation. Our results are summarized in Scheme 3. 
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Sequential treatment of the (E)-imide u4 with L-Selectride and MeI/HMPA gave a stereo- 

isomer mixture from which the major (syn)-(2R,3S)-isomer B4 (90%) was obtained in 99% purity 

after flash chromatography/crystallization. Alternatively, the (Z)-imideA4 when subjected to 

the same reaction conditions afforded the (anti)-(2R,3R) product u4 with somewhat lower a- 

induction; nevertheless,its stereoisomeric purity was raised to 98% by flash chromatography- 

crystallization. These examples show the capacity of the sultam unit to control the generation 

of center C(B) corresponding to the (E)/(Z)-ratio of olefinic imides Id/b; subsequent for- 

mation of center C(a) is only moderately affected by C(B). Accounting for the easy 

availability of the antipodal camphor sultam6 each of the four stereoisomers 1 to m can be 

individually prepared in 98 to 99% purity. In practical terms it is worth noting that the 

auxiliary sultam 12 was efficiently recovered by mild hydrolysis (LiOH, aq THF, 40") of adduct 

8 thus giving acid 11 without a-epimerization in 98% enantiomeric excess.Furthermore, all 

diastereoisomer ratios described here, were routinely determined by direct GC- and l-NMR 

4 analyses . 
The stereoface differentiations observed throughout this work are consistent with the 

transition state topologies depicted in the Scheme 4. 
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Based on the X-ray diffraction analysis of the corresponding crotonoyl sultam 6a we assume 

that the starting enoyl sultams react in the conformation B where the carbonyl group is anti 

to the SO2 group and s-cis to the C(a),C(B)-double bond; the p-stereodifferentiation is then 

dictated by lithium coordination and hydride attack from the less hindered bottom face to 

generate enolate B7. By contrast we have ascribed previously the opposite s-face selection on 

Pd-catalyzed hydrogenations of imides 1. to a conformation with syn-disposed C-O/SO2 groups2. 

To explain the a-stereodifferentiation found on protonation and methylation of the 

transient enolates we have to consider 1)their (E)/(Z)- configurations as well as 2)their 

conformations. 

1)In line with stereochemical studies of conjugate reductions of enones we postulate the 

enoyl-s-cis-conformation A to translate into the enolate configuration B. This is supported by 

a comparison of entries g and h (Scheme 2). Accordingly, conjugate reduction of a-substituted 

acryloylsultam &g should yield the (E)-enolate & (R1-R* - H, R3 - C3H7) , whereas the fi- 

substituted enoyl sultam & would be transformed to the (Z)-isomer B (R1,R2 - H,C2H5* R3 = 

CH3) In complete agreement with this hypothesis & and $!I yielded as major products 6~ and 

a, respectively, which possess the same substitution pattern but the opposite a- 

configuration. This exemplifies a new selective route to either (E) or (2) enolates via 

permutation of the a,p-substituents in a carbonyl-conjugated precursor. 

2) Consistent with the observed a-configurations of products &, a, 8 and u we assume 

that the enolates & are reorganized to give the more stable conformers C where the enolate- 

and SO2 oxygens are chelated by the lithium counterion;subsequently, the electrophile 

approaches predominantly opposite to the auxiliary-shielded C(a)-top face. 
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Entries k and 1 (Scheme 3) are particularly interesting as they reflect the counterplay of 

inductive effects provided by the sultam auxiliary & by the C(b)-center. Accounting for 

eclipsed C-C/C(b)-H bonds in C and for an electrophile approach anti to the larger group Rl or 

R2 5,9 the C(p)- versus auxiliary bias should match when R1-nBu, R2=-Me (entry k) but n&s-match 

when Rl-Me, R2-nBu (entry 1). In agreement with this model the conversion u -t s displays a 

higher a-stereodifferentiation (entry k, 88%d.e.) than the transformation h + u (entry 1, 

74%d.e.). From the practical standpoint it is noteworthy that in the latter case the intrinsic 

o-topological influence of the auxiliary overrides that of the C(b)-center 10 ; thus, given its 

easy purification crystalline u was obtained in lOO%d.e. at C(a) and 96% d.e. at C(p). 

In summary we have described here the predictable and versatile generation of two 

contiguous asymmetric centers in one operation and exemplified a new stereoselective approach 

to enolates. Further extensions of this methodology are presently under investigation. 
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